Кремнезём: профессиональные риски нарушений здоровья
https://doi.org/10.31089/1026-9428-2023-63-6-386-396
EDN: wpynoy
Аннотация
Представлен анализ современных взглядов на риски производственного воздействия кремнезёма. Описана история изучения проблемы за рубежом и в России. Представлены заболевания, связанные с кремнезёмом, как в традиционных, так и в новых сферах экономики. Рассмотрена связь воздействия диоксида кремния с формированием аутоиммунных заболеваний, хронической обструктивной болезни лёгких, патологии почек, сердечно-сосудистой системы и др. Описаны современные взгляды на механизмы развития лёгочных и внелёгочных заболеваний, связанных с воздействием диоксида кремния. Рассмотрены современные подходы к профилактике мультисистемных рисков, ассоциированных с кремнезёмом.
Этика. Исследование не требовало заключения этического комитета.
Участие авторов:
Горблянский Ю.Ю. — концепция и дизайн исследования, написание текста;
Шуякова Е.А. — написание текста;
Конторович Е.П. — написание текста, редактирование;
Понамарева О.П. — написание текста, оформление библиографии.
Финансирование. Исследование не имело спонсорской поддержки.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Дата поступления: 08.05.2023 / Дата принятия к печати: 18.05.2023 / Дата публикации: 12.06.2023
Ключевые слова
Об авторах
Юрий Ю. ГорблянскийРоссия
Екатерина А. Шуякова
Россия
Елена Павловна Конторович
Россия
Доцент кафедры профпатологии, ФГБОУ ВО «Ростовский государственный медицинский университет» МЗ РФ, Ростов-на-Дону, канд. мед. наук.
e-mail: kontorovichep@yandex.ru
Оксана П. Понамарева
Россия
Список литературы
1. Castranova V., Vallyathan V. Silicosis and coal workers´ pneumoconiosis. Environ Health Perspect. 2000; 108(Suppl 4): 675–684. https://doi.org/10.1289/ehp.00108s4675
2. Liu J.Y., Sayes C.M. A toxicological profile of silica nanoparticles. Toxicol Res (Camb). 2022; 11(4): 565–582. https://doi.org/10.1093/toxres/tfac038
3. Sharma N., Jha S. Amorphous nanosilica induced toxicity inflammation and innate immune responses: A critical review. Toxicology. 2020; 441: 152519. https://doi.org/10.1016/j.tox.2020.152519
4. Napierska D., Thomassen L.C., Lison D., Martens J.A., Hoer P.H. The nanosilica hazard: Another variable entity. Part. Fibre Toxicol. 2010; 7: 39. https://doi.org/10.1186/1743-8977-7-39
5. Hoy R., Jeebhay M., Cavalin C., Chen W., Cohen R., Fireman E. et al. Current global perspectives on silicosis–Convergence of old and newly emergent hazards. Respirology. 2022; 27(6): 387–398. https://doi.org/10.1111/resp.14242
6. Scarselli A., Binazzi A., Marinaccio A. Occupational exposure to crystalline silica: estimating the number of workers potentially at high risk in Italy. Am J Ind Med. 2008; 51(12): 941–949. https://doi.org/10.1002/ajim.20619
7. Da Silva V.M., Benidir M., Montagne P., Pairon J.-C., Lanone S., Andular P. Pulmonary Toxicity of Silica Linked to its Micro-or Nanometric Particle Size and Crystal Structure: A Review. Nanomaterials (Basel). 2022; 12(14): 2392. https://doi.org/10/3390/nano12142392
8. Leso V., Fontana L., Romano R., Gervetti P., Iavicoli I. Artificial stone associated silicosis: a systematic review. Int J Environ Res Public Health. 2019; 16: 568. https://doi.org/10.3390/ijerph16040568
9. Wen С., Wen X., Li R., Su S., Xu H. Silicosis in rhinestone-manufacturing workers in South China. Occup Med (Lond). 2019; 69(7): 475–481. https://doi.org/10.1093/occmed/kqz107
10. Shi P., Xing X., Xi S., Jing H., Yuan J., Fu Z. et al. Trends in global, regional and national incidence of pneumoconiosis caused by different aetiologies: an analysis from the Global Burden of Disease Study 2017. Occup Environ Med. 2020; 77: 407–14. https://doi.org/10.1136/oemed-2019-106321
11. Ehrlich R. Commentary Silica — A Multisystem Hazard. Int J Epidemiol. 2021; 50(4): 1226–1228. https://doi.org/10.1093/ije/dyab020
12. Westerholm P. Silicosis. Observatons on a case register. Scand J Work Environ Health. 1980; Suppl 2: 1–86. https://doi.org/10.5271/sjweh.2639
13. Finkelstein M., Kusiak R., Suranyi G. Mortality among miners receiving workmen´s compensation for silicosis in Ontario: 1940–1975. J Occup Med. 1982; 24(9): 663–667. https://doi.org/10.1097/00043764-198209000-00012
14. Goldsmith D.F., Winn D.M., Shy C.M. Silica, silicosis and lung cancer. Controversy in occupational medicine. New York: Praeger publications; 1986.
15. Poinen-Rughooputh S., Rughooputh M.S., Guo Y., Rong Y., Chen W. Occupational exposure to silica dust and risk of lung cancer: an updated meta-analysis of epidemiological studies. BMC Public Health. 2016; 16(1): 1137. https://doi.org/10.1186/s12889-016-3791-S
16. Sato T., Shimosato T., Klinman D.M. Silicosis and lung cancer: current perspectives. Lung Cancer (Auckl). 2018; 9: 91–101. https://doi.org/10.2147/LCTT.S156376
17. Vlahovich К.Р., Sood A. 2019 Update on Occupational Lung Diseases: A Narrative Review. Pulm Ther. 2021; 7: 75–87. https://doi.org/10.1007/s41030-020-00143-4
18. Kamenova A., Sathyamoorthy T., Bain G., Viola P., Margaritopoulos G.A. Bilateral mediastinal lymphadenopathy with cough and shortness of breath. Breathe. 2022; 18: 220218. https://doi.org/10.1183/20734735.0218-2022
19. Brown T. Silica exposure, smoking, silicosis and lung cancer-complex interactions. Occup Med (Lond). 2009; 59(2): 89–95. https://doi.org/10.1093/occmed/kqn171
20. Chen W., Liu Y., Wang H., Hnizdo E., Sun Y., Su L. et al. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study. PLoS Med. 2012; 9(4): e1001206. https://doi.org/10.1371/journal.pmed.1001206
21. Ndlovu N., Nielson G., Vorajee N., Murray J. 38 Years of autopsy finding in South African mine workers. Am J Ind Med. 2016; 59(4): 307–14. https://doi.org/10.1002/ajim.22574
22. Greenberg M.I., Waksman J., Curtis J. Silicosis: a review. Dis Mon. 2007; 53(8): 394–416. https://doi.org/10.1016/j.disamonth.2007.09.020
23. Zosky G.R., Hoy R.F., Silverstone E.J., Brims F.J., Miles S., Johnson A.R. et al. Coal workers´ pneumoconiosis an Australian perspective. Med J Aust. 2016; 204(11): 414–8. https://doi.org/10.5694/mja16.00357
24. Blackley D.J., Halldin C.N., Laney A.S. Continued increase in prevalence of coal workers´ pneumoconiosis in the United States, 1970-2017. Am. J. Public Health. 2018; 108(9): 1220–1222. https://doi.org/10.2105/AJPH.2018.304517
25. Misra S., Sussell A.L., Wilson S.E., Poplin G.S. Occupational exposure to respirable crystalline silica among US metal and nonmetal miners, 2000–2019. Am. J. In. Med. 2023; 66(4): 199–212. https://doi.org/10.1002/ajim.23451
26. Leung C.C., Yu I.T., Chen W. Silicosis. Lancet. 2012; 379(9830): 2008–18. https://doi.org/10.1016/S0140-6736(12)60235-9
27. Cohen R.A., Petsonk E.L., Rose C., Young B., Regier M., Najmuddin A. et al. Lung pathology in U.S. coal workers with rapidly progressive pneumoconiosis implicates silica and Silicates. Am J Respir Crit Care Med. 2016; 193(6): 673–80. https://doi.org/10.1164/rccm.201505-1014OC
28. Almberg K.S., Friedman L.S., Rose C.S., Go L.H.T., Cohen R.A. Progression of coal workers´ pneumoconiosis absent further exposure. Occup Environ Med. 2020; 77(11): 748–751. https://doi.org/10.1136/oemed-2020-106466
29. Doney B.C., Blackley D., Hale J.M., Halldin C., Kurth L., Syamlal G. et al. Respirable coal mine dust in underground mines, United States, 1982–2017. Am J Ind Med. 2019; 62(6): 478–485. https://doi.org/10.1002/ajim.22974
30. Шпагина Л.А., Паначева Л.А., Е.В. Золотухина Е.В. Вопросы этического регулирования иммунобиологической терапии некоторых профессиональных заболеваний лёгких. Пермский медицинский журнал. 2021; 38(3): 131–140. https://doi.org/10.17816/pmj383131-140
31. Визель А.А., Горблянский Ю.Ю., Илькович И.И. и др. Фиброзирующий саркоидоз: от понимания к перспективе лечения. Практическая пульмонология. 2021; 1: 61–73. https://clck.ru/34Z3e7 (дата обращения: 22.04.2023)
32. Suarthana E., Moons K.G.M., Heederik D., Meijer E. A simple diagnostic model for ruling out pneumoconiosis among construction workers. Occup Environ Med. 2007; 64(9): 595–601. https://doi.org/10.1136/oem.2006.027904
33. Rosmans S., Verbeken E.K., Adams E., Keirsbilck S., Yserbyt J., Wuyts W.A. et al. Granulomatous lung disease in two workers making light bulbs. Am J Ind Med. 2019; 62(10): 908–913. https://doi.org/10.1002/ajim.23030
34. Hoy R.F., Baird T., Hammerschlag G., Hart D., Johnson A.R., King Р. et al. Artificial stone-associated silicosis a rapidly emerging occupational lung disease. Occup Environ Med. 2018; 75(1): 3–5. https://doi.org/10.1136/oemed02017-1044283
35. Hall S., Stacey P., Pengelly I., Stagg S., Saunders J., Hambling S. Characterizing and Comparing Emissions of Dust, Respirable Crystalline Silica, and Volatile Organic Compounds from Natural and Artificial Stones. Ann Work Expo Health. 2022; 66(2): 139–149. https://doi.org/.1093/annweh/wxab055
36. Murgia N., Muzi G., Dell'Omo M., Sallese D., Ciccotosto C., Rossi M. et al. An old threat in a new setting: High prevalence of silicosis among jewelry workers. Am J Ind Med. 2007; 50(8): 577–583. https://doi.org/10.1002/ajim.20490
37. Girdler-Brown B.V., White N.W., Ehrlich R.I., Churchyard G.J. The burden of silicosis, pulmonary tuberculosis and COPD among former Basotho goldminers. Am J Ind Med. 2008; 51(9): 640–647. https://doi.org/10.1002/ajim.20602
38. Nelson G., Murray J. Silicosis at autopsy in platinum mine workers. Occup Med (Lond). 2013; 63(3): 196–202. https://doi.org/10.1093/occmed/kqs211
39. De Matteis S., Heederik D., Burdorf A., Colosio C., Cullinan P., Henneberger P.K. et al. Current and new challenges in occupational lung diseases. Eur Respir Rev. 2017; 26(146): 170080. https://doi.org/10.1183/16000617.0080-2017
40. Sahbaz S., Inönü H., Ocal S., Yilmaz A., Pazarli C., Yeğinsu A. et al. Denim sandblasting and silicosis two new subsequent cases in Turkey. Tuberk Toraks. 2007; 55(1): 87–91. PMID: 17401800
41. Taskar V.S., Coulta D.B. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc. 2006; 3(4): 293–298. https://doi.org/10.1513/pats.200512-131TK
42. Steenland K. One agent, many diseases: exposure response data and comparative risks of different outcomes following silica exposure. Am J Ind Med. 2005; 48(1): 16–23. https://doi.org/10.1002/ajim.20181
43. Vihlborg P., Bryngelsson I.L., Andersson L., Graff P. Risk of sarcoidosis and seropositive rheumatoid arthritis from occupational silica exposure in Swedish iron foundries: a retrospective cohort study. BMJ Open. 2017; 7(7): e016839. https://doi.org/10.1136/ bmjopen-2017-016839
44. Parks C.G., Miller F.W., Pollard K.M., Selmi C., Germolec D., Joyce K. et al. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int J Mol Sci. 2014; 15(8): 14269–97. https://doi.org/10.3390/ijms150814269
45. Patel S., Morrisroe K., Proudman S., Hansen D., Sahhar J., Sim M.R. et al. Occupational silica exposure in an Australian systemic sclerosis cohort. Rheumatology (Oxford). 2020; 59(12): 3900–5. https://doi.org/10.1093/rheumatology/keaa446
46. Pfau J.C., Barbour C., Black B., Serve K.M., Fritzier M.J. Analysis of autoantibody profiles in two asbestiform fiber exposure cohorts. J Toxicol Environ Health A. 2018; 81(19): 1015–27. https://doi.org/10.1080/15287394.2018.1512432
47. Boudigaard S.H., Schlünssen V., Vestergaard J.M., Sendergaard K.S., Torén K., Peters S. et al. Occupational exposure to respirable crystalline silica and risk of autoimmune rheumatic diseases: a nationwide cohort study. Int J Epidemiol. 2021; 50(4): 1213–1226. https://doi.org/10.1093/ije/dyaa287
48. Glazer C.S., Newman L.S. Occupational interstitial lung disease. Clin Chest Med. 2004; 25(3): 467–478. https://doi.org/10.1016/j.ccm.2004.04.004
49. Koo J.W., Myong J.P., Yoon H.K., Rhee C.K., Kim Y., Kim J.S. et al. Occupational exposure and idiopathic pulmonary fibrosis: a multicenter case-control study in Korea. Int J Tuberc Lung Dis. 2017; 21(1). 107–112. https://doi.org/10.5588/ijtld.16.0167
50. Napierska D., Thomassen L.C.J., Lison D., Martens J.A., Hoet P.H, The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010; 7(1): 39. https://doi.org/10.1186/1743-8977-7-39
51. Barnes I., Goh H., Leong N.S.L., Hoy T.L. Silica-associated lung disease: An old-world exposure in modern industries. Respirology. 2019; 24(12): 1165–1175. https://doi.org/10.1111/resp.13695
52. Blackley D.J., Halldin C.N., Wang M.L., Laney A.S. Small mine size is associated with lung function abnormality and pneumoconiosis among underground coal miners in Kentucky, Virginia and West Virginia. Occup Environ Med. 2014; 71(10): 690–4. https://doi.org/10.1136/oemed-2014-102224
53. Roney N., Faroon M. et al. Toxicological Profile for Silica. Anlanta, GA: U.S. Department of Health and Human Services, Public Health Service: Agency for Toxic Substances and Disease Registry (ATSDR), 2019. https://stacks.cdc.gov/view/cdc/81729/cdc_81729_DS1.pdf
54. Pollard K.M. Silica silicosis and autoimmunity. Front Immunol. 2016; 7: 97. https://doi.org/10.3389/fimmu.2016.00097
55. Гаранина Е.Е., Мартынова Е.В., Иванов К.Я., Ризванов А.А., Хайбуллина С.Ф. Инфламмасомы: роль в патогенезе заболеваний и терапевтический потенциал. Ученые записки Казанского университета. Серия естественные науки. 2020; 162(1): 80–111. https://doi.org/10.26907/2542-064x.2020.1.80-111
56. Benmerzoug S., Rose S., Bounab B., Gosset D., Duneau L., Chenuet P. et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018; 9(1): 5226. https://doi.org/10.1038/s41467-018-07425-1
57. Lescoat A., Ballerie A., Lelong M., Augagneur Y., Morzadec C., Jouneau S. et al. Crystalline silica impairs efferocytosis abilities of human and mouse macrophages: implication for silica-associated systemic sclerosis. Front Immunol. 2020; 11: 219. https://doi.org/10.3389/fimmu.2020.00219
58. Величковский Б.Т., Павловская Н.А., Пиктушанская И.Н., Горблянский Ю.Ю. Методы определения влияния фиброгенной пыли на организм в эксперименте и клинике. Москва; 2003. ISBN 5-7509-0696-5
59. Morse C., Tabib T., Sembrat J., Buschur K., Bittar H.T., Valenzi E. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Resp J. 2019; 54(2): 1802441. https://doi.org/10.1183/13993003.02441-2018
60. Nau G.J., Guilfoile P., Chupp G.L., Berman J.S., Kim S.J., Komfeld H. et al. A chemoattractant cytokine associated with granulomas in tuberculosis and silicosis. Proc Natl Acad Sci USA. 1997; 94(12): 6414–6419. https://doi.org/10.1073/pnas.94.12.6414
61. Beamer C.A., Migliaccio C.T., Jessop F., Trapkus M., Yuan D., Holian A. Innate immune processes are sufficient for driving silicosis in mice. J Leukos Biol. 2010; 88(3): 547–57. https://doi.org/10.1189/jlb.0210108
62. Sai L., Qi X., Yu G., Zhang J., Zheng Y., Jia Q., Peng C. Dynamic assessing silica particle-induced pulmonary fibrosis and associated regulation of long non-coding RNA expression in Wistar rats. Genes Environ. 2021; 43(1): 23. https://doi.org/10.1186/s41021-021-00193-3
63. Thakur S.A., Beamer C.A., Migliaccio C.T., Holian A. Critical role of MARCO in crystalline silica-induced pulmonary inflammation. Toxicol Sci. 2009; 108(2): 462–471. https://doi.org/10.1093/toxsci/kfp011
64. Bodo M., Baroni T., Bellocchio S., Calvitti M., Lilli C., D´Alessandro A. et al. Bronchial epithelial cell matrix production in response to silica and basic fibroblast growth factor. Mol. Med. 2001; 7(2): 83–92. https://doi.org/10.1007/BF03401942
65. Vanka K.S., Shukla S., Gomez H.M., James C., Palanisami T., Williams K. et al.. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev. 2022; 31(165): 210250. https://doi.org/10.1183/16000617.0250-2021
66. Yin H., Xie Y., Gu P., Li W., Zhang Y., Yao Y. et al. The emerging role of epigenetic regulation in the progression of silicosis. Clin Epigenetics. 2022; 14(1): 169. https://doi.org/10.1186/s13148-022-01391-8
67. Valdés-Rives S.A., González-Arenas A. Autotaxin-lysophosphatidic acid: from inflammation to cancer development. Mediators Inflamm. 2017; 2017: 9173090. https://doi.org/10.1155/2017/9173090
68. Lee S., Hayashi H., Maeda M., Chen Y., Matsuzaki H., Takei-Kumagai N. et al. Environmental factors producing autoimmune dysregulation-chronic activation of T cells caused by silica exposure. Immunobiology. 2012; 217(7): 743–748. https://doi.org/10.1016/j.imbio.2011.12.009
69. Ophir N., Shai A.B., Korenstein R., Kramer M.R., Fireman E. Functional, inflammatory and interstitial impairment due to artificial stone dust ultrafine particles exposure. Occup Environ Med. 2019; 76(12): 875–879. https://doi.org/10.1136/oemed-2019-105711
70. Bates M.A., Brandenberger C., Langohr I., Kumagai K., Harkema J.R., Holian A. et al. Silica triggers inflammation and ectopic lymphoid neogenesis in the lungs in parallel with accelerated onset of systemic autoimmunity and glomerulonephritis in the lupus-prone NZBWF1 mouse. PLoS One. 2015; 10(5): e0125481. https://doi.org/10.1371/journal.pone.0125481
71. Rice F.L., Park B., Stayner L.T. Silica, lung cancer, and respiratory disease quantitative risk. Washington, D.C.: National Institute for Occupational Safety and Health; 2011. https://stacks.cdc.gov/view/cdc/5914
72. Litow F.K., Petsonk E.L., Bohnker B.K., Brodkin C.A., Cowl C.T., Guidotti T.L. et al. Occupational Interstitial Lung Diseases. J Occup Environ Med. 2015; 57(11): 1250–1254. https://doi.org/10.1097/JOM.0000000000000608
73. Lacasse Y., Martin S., Gagné D., Lakhal L. Dose-response meta-analysis of silica and lung cancer. Cancer Causes Control. 2009; 20(6): 925–933. https://doi.org/10.1007/s10552-009-9296-0
74. Johanson G., Tinnerberg H. Binding occupational exposure limits for carcinogens in the EU — good or bad? Scand J Work Environ Health. 2019; 45(3): 213–214. https://doi.org/10.5271/sjweh.3825
Рецензия
Для цитирования:
Горблянский Ю.Ю., Шуякова Е.А., Конторович Е.П., Понамарева О.П. Кремнезём: профессиональные риски нарушений здоровья. Медицина труда и промышленная экология. 2023;63(6):386-396. https://doi.org/10.31089/1026-9428-2023-63-6-386-396. EDN: wpynoy
For citation:
Gorblyansky Yu.Yu., Shuyakova E.A., Kontorovich E.P., Ponamareva O.P. Silica: occupational risks of health disorders. Russian Journal of Occupational Health and Industrial Ecology. 2023;63(6):386-396. (In Russ.) https://doi.org/10.31089/1026-9428-2023-63-6-386-396. EDN: wpynoy